Tentukanrasio, rumus suku ke-n, dan suku kesepuluh dari setiap barisan geometri berikut a. 1,4,16,64, b. 3,-6,12,-24 kita ambil 3 sama minum untuk menghitung rasio nya kita / 6 dengan suku sebelumnya itu tidak kita ini min 2 sehingga rumus suku ke-n yaitu UN = an suku pertama yaitu 3 dikalikan rasionya itu min 2 pangkat n kurang satu Jawabanrasio r dari barisan geometri tersebut adalah − 2 , rumus suku ke- n nya adalah U n ​ ​ = ​ 3 ⋅ − 2 n − 1 ​ , suku kesepuluh nya adalah − 1532 .rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah . PembahasanJawaban yang benar untuk pertanyaan tersebut adalah rasio dari barisan geometri tersebut adalah − 2 , rumus suku ke- n nya adalah U n ​ ​ = ​ 3 ⋅ − 2 n − 1 ​ , suku kesepuluh nya adalah − 1532 . Ingat rumus umum suku ke- n deret geometri U n ​ = a ⋅ r n − 1 Dengan U n ​ suku ke − n a suku pertama r rasio = U n − 1 ​ U n ​ ​ n banyak suku ​ Jadi diperoleh rasio r dan suku pertama a dari barisan tersebut adalah a r ​ = = = ​ 3 dan 3 − 6 ​ − 2 ​ Rumus suku ke- n nya adalah U n ​ U n ​ ​ = = ​ a ⋅ r n − 1 3 ⋅ − 2 n − 1 ​ Suku kesepuluh nya adalah U n ​ U 10 ​ ​ = = = = = ​ 3 ⋅ − 2 n − 1 3 ⋅ − 2 10 − 1 3 ⋅ − 2 9 3 ⋅ − 512 − 1536 ​ Dengan demikian, rasio r dari barisan geometri tersebut adalah − 2 , rumus suku ke- n nya adalah U n ​ ​ = ​ 3 ⋅ − 2 n − 1 ​ , suku kesepuluh nya adalah − 1532 .Jawaban yang benar untuk pertanyaan tersebut adalah rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah . Ingat rumus umum suku ke- deret geometri Jadi diperoleh rasio dan suku pertama dari barisan tersebut adalah Rumus suku ke- nya adalah Suku kesepuluh nya adalah Dengan demikian, rasio dari barisan geometri tersebut adalah , rumus suku ke- nya adalah , suku kesepuluh nya adalah .
Tentukanrumus suku ke-n setiap barisan geometri berikut! Share : Post a Comment for "Tentukan rumus suku ke-n setiap barisan geometri berikut! 1/27, 1/9, 1/3, 1, " Newer Posts Older Posts Pondok Budaya Bumi Wangi. DMCA. About Me. Mas Dayat Lereng Gunung Muria, Kudus, Jawa Tengah, Indonesia.
BARISANDERET BILANGAN ARITMATIKA DAN DERET GEOMETRI N adalah indeks yg menyatakan banyaknya suku dalam suatu barisan. Suku k n yg dilambangkan dengan un di sebut suku umum barisan. Contoh : Tentukan tiga suku pertama pada barisan berikut ini, jika suku ke n dirumuskan sbagai : a) Un = 3n + 1 b) Un = 2n² - 1 Jawab : Suku ke n, un = 3n + 1
Jikabarisan aritmetika beda setiap sukunya dengan selisih pengurangan maupun penambahan, sedangkan barisan geometri lewat perkalian. Berikut rumus suku ke-n barisan geometri: Un = arn-1. Simbol r yaitu perbandingan atau rasio nilai suku yang berdekatan dan selalu sama. Berikut contoh soalnya: 1. Tentukan suku ke-10 dari barisan geometri 3,6,12
\n\ntentukan rumus suku ke n setiap barisan geometri berikut
denganUn = Suku ke-n a = suku awal / suku pertama. b = beda. Contoh : Tentukan suku ke-15 dan suku ke-20 dari barisan : 1 , 4 , 7 , 10 , Jawab : a = 1 b = 4 - 1 = 7 - 4 = 3. Un = a + (n-1) b U15 = 1 + (15 - 1) x 3 = 1 + 14 x 3 = 1 + 42 = 43. U20 = 1 + (20 - 1) x 3 = 1 + 19 x 3 = 1 + 57 = 58. Jadi suku ke-15 = 43 dan suku ke-20 = 58 Berikutgua cantumin nih rumus suku ke n barisan aritmatika. Un = a + ( n - 1 ) b Sekarang kita loncat ke rumus suku ke n di barisan geometri. Barisan geometri ini adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkalian dengan suatu bilangan. Intinya ya aritmatika berselisih penambahan dan pengurangan LRtdL.
  • iomj4ab2b1.pages.dev/496
  • iomj4ab2b1.pages.dev/234
  • iomj4ab2b1.pages.dev/378
  • iomj4ab2b1.pages.dev/167
  • iomj4ab2b1.pages.dev/281
  • iomj4ab2b1.pages.dev/275
  • iomj4ab2b1.pages.dev/486
  • iomj4ab2b1.pages.dev/532
  • tentukan rumus suku ke n setiap barisan geometri berikut